Exercise 62

If $f(x) = xe^{\sin x}$, find f'(x). Graph f and f' on the same screen and comment.

Solution

Calculate f'(x) by using the chain and product rules.

$$f'(x) = \frac{d}{dx}(xe^{\sin x})$$

$$= \left[\frac{d}{dx}(x)\right]e^{\sin x} + x\left[\frac{d}{dx}(e^{\sin x})\right]$$

$$= (1)e^{\sin x} + x\left[(e^{\sin x}) \cdot \frac{d}{dx}(\sin x)\right]$$

$$= e^{\sin x} + x[(e^{\sin x}) \cdot (\cos x)]$$

$$= e^{\sin x} + xe^{\sin x}\cos x$$

$$= e^{\sin x}(1 + x\cos x)$$

Below is a graph of f(x) and f'(x) versus x.

Notice that f'(x) is zero whenever the tangent line to f(x) is horizontal, f'(x) is positive whenever f(x) is increasing, and f'(x) is negative whenever f(x) is decreasing.