Exercise 62

If $f(x)=x e^{\sin x}$, find $f^{\prime}(x)$. Graph f and f^{\prime} on the same screen and comment.

Solution

Calculate $f^{\prime}(x)$ by using the chain and product rules.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x e^{\sin x}\right) \\
& =\left[\frac{d}{d x}(x)\right] e^{\sin x}+x\left[\frac{d}{d x}\left(e^{\sin x}\right)\right] \\
& =(1) e^{\sin x}+x\left[\left(e^{\sin x}\right) \cdot \frac{d}{d x}(\sin x)\right] \\
& =e^{\sin x}+x\left[\left(e^{\sin x}\right) \cdot(\cos x)\right] \\
& =e^{\sin x}+x e^{\sin x} \cos x \\
& =e^{\sin x}(1+x \cos x)
\end{aligned}
$$

Below is a graph of $f(x)$ and $f^{\prime}(x)$ versus x.

Notice that $f^{\prime}(x)$ is zero whenever the tangent line to $f(x)$ is horizontal, $f^{\prime}(x)$ is positive whenever $f(x)$ is increasing, and $f^{\prime}(x)$ is negative whenever $f(x)$ is decreasing.

